The Spectral Geometry of the Canonical Riemannian Submersion of a Compact Lie Group
نویسندگان
چکیده
Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric. Let m(x, y) = xy be the multiplication operator. We show the associated fibration m : G × G → G is a Riemannian submersion with totally geodesic fibers and we study the spectral geometry of this submersion. We show the pull back of eigenforms on the base have finite Fourier series on the total space and we give examples where arbitrarily many Fourier coefficients can be non-zero. We give necessary and sufficient conditions that the pull back of a form on the base is harmonic on the total space.
منابع مشابه
Flats in Riemannian Submersions from Lie Groups
We prove that any base space of Riemannian submersion from a compact Lie group (with bi-invariant metric) must have a basic property previously known for normal biquotients; namely, any zero-curvature plane exponentiates to a flat.
متن کاملOn Totally Geodesic Foliations and Doubly Ruled Surfaces in a Compact Lie Group
For a Riemannian submersion from a simple compact Lie group with a bi-invariant metric, we prove the action of its holonomy group on the fibers is transitive. As a step towards classifying Riemannian submersions with totally geodesic fibers, we consider the parameterized surface induced by lifting a base geodesic to points along a geodesic in a fiber. Such a surface is “doubly ruled” (it is rul...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملOn the Integrability of Geodesic Flows of Submersion Metrics
Suppose we are given a compact Riemannian manifold (Q, g) with a completely integrable geodesic flow. Let G be a compact connected Lie group acting freely on Q by isometries. The natural question arises: will the geodesic flow on Q/G equipped with the submersion metric be integrable? Under one natural assumption, we prove that the answer is affirmative. New examples of manifolds with completely...
متن کاملRiemannian Submersions and Lattices in 2-step Nilpotent Lie Groups
We consider simply connected, 2-step nilpotent Lie groups N, all of which are diffeomorphic to Euclidean spaces via the Lie group exponential map exp : ˆ → N. We show that every such N with a suitable left invariant metric is the base space of a Riemannian submersion ρ : N* → N, where the fibers of ρ are flat, totally geodesic Euclidean spaces. The left invariant metric and Lie algebra of N* ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006